
state of the heat transport surface due to precipitate formation. Beforehand deoxygenation 
of fuels encourages a reduction in precipitate formation and reduction in heat liberation 
intensity. 

NOTATION 

q, thermal flux density, kW/m2; ~, heat liberation coefficient, kW/(m2"K); P, pressure, 
MPa; C02, volume concentration of oxygen dissolved in fuel, %. 
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COMPUTATION OF THE RADIATION FLUX EMANATING 

FROM A HIGHLY DISPERSE LAYER 

V. V. Levdanskii and V. G. Leitsina UDC 536.3 

Problems of the radiation of a highly disperse layer and of radiation transfer 
in a disperse layer-enclosing surface system are examined. The influence is 
analyzed of nonisothermy on the radiation flux density emanating from the layer. 
A dependence of this quantity on the system parameters is found. 

The necessity for the solution of problems associated with radiation energy transfer 
in highly disperse media (porous bodies, aerodispersed systems) occurs in the description 
of many technological processes. In a number of cases the disperse system with moving par- 
ticles that is under consideration is enclosed in a certain volume such that heat transfer 
by radiation occurs between it and the enclosing surfaces [i]. If the surface temperature 
is below the particle temperature, a temperature drop can occur in the disperse medium [2]. 
The problem of a radiator in which energy releases are realized by atomization of hot fluid 
drops in cosmic space and cooling them by radiation heat extraction and then collection of 
the cold particles is examined in [3]. All the problems mentioned are associated with a 
computation of the heat transfer by radiation from a disperse medium with enclosing surfaces 
or of heat elimination into outer space. 

A survey of the different models utilized to compute heat transfer by radiation in 
disperse systems in both the case of a fixed skeleton of a porous body and for moving par- 
ticles of condensed phase (in particular, for fluidized media) is presented in [2, 4, 5]. 
We shall later use the random walk model of particles (photons in this case) in a macropar- 
ticle medium that can be their sources or sinks. According to this model, the disperse 
medium is simulated by a homoeneous system of chaotically distributed fixed opaque spheri- 
cal particles of radius r. Such a model is applied in [6] to compute the mass transfer in 
a subliming porous layer for a free-molecule gas flow. Taking account of the known analogy 
between mass transfer processes for a free-molecule gas flow and radiation transfer [7], 
this approach was utilized in [5] to compute radiation propagation in a porous layer. The 
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i. Geometric diagram of the problem. 

model mentioned describes real highly disperse media sufficiently adequately, i.e., highly 
porous bodies of globular structure and aerodisperse systems. 

The problem of heat transfer by radiation from a plane-parallel disperse layer with 
enclosing surfaces (Fig. i) is solved in this paper by using this model. The case of a 
plane-parallel layer (i.e., the one-dimensional problem) is examined for simplicity and 
clearness of the computations as well as in connection with the possibility of comparing 
the results obtained with data existing in the literature that refer also to plane-parallel 
layers in the majority of cases. Let us note that these results can be utilized even for 
radiating layers bounded by curved surfaces in the case when the layer thickness is much 
less than the radii of curvature of the surfaces. 

Utilization of the analogy between the free-molecule gas flow process in porous bodies 
and the heat transfer process by radiation is justified if and only if wave effects can be 
neglected, i.e., for a radiation wavelength much less than the diameter of the spheres simu- 
lating the particles of the disperse system and the spacings between them. As is noted in 
[2], these conditions are satisfied for high-temperature fluidized systems and, moreover, 
the approximation of gray radiation particles can be used. Further computations are also 
performed within the framework of the mentioned assumptions, where the medium between the 
particles is here assumed transparent. 

Let us assume that isotropic scattering of the radiation by the particles occurs while 
the surface emissivity (radiativity) equals its absorptivity. In this case the integral 
equation for the radiation power density emitted by unit volume of a disperse layer of 
thickness L has the following form for taking account of the intrinsic thermal radiation of 
the spheres [5] 

I 

(x) = t ( I - -  e) I f  (D (~) exp { - -  2l t x - -  ~ [} d~ -t- 2rt]o (exp { - -2  Ix } -+- 
0 

-}- exp { - -2 l  ( 1 - -  x)})] -+- 4II~lT-S (x). ( 1 ) 

The first components in the square brackets in (i) describes the radiation incident in 
unit volume of the disperse layer in the neighborhood of the point x from the rest of the 
volume, the other two are from the outer surfaces 1 and 2. Here the dimensionless quanti- 
ties 

X J0 -- cDL L T =  T 
- - 1  x - -  L ,  ] o = - - ~ - ,  O =  aT--T , l=--~- ,  re 

a r e  i n t r o d u c e d ,  w h e r e  J0 i s  t h e  d i f f u s e  r a d i a t i o n  f l u x  d e n s i t y  i n c i d e n t  on e a c h  o f  t h e  l a y e r  
b o u n d a r i e s ;  ~ and T a r e  t h e  d i m e n s i o n a l  r a d i a t i o n  power  d e n s i t y  and  t h e  t e m p e r a t u r e  o f  t h e  
p o r o u s  l a y e r ,  T c = T ( L / 2 ) ,  ~ i s  t h e  p h o t o n  mean f r e e  p a t h  d e t e r m i n e d  by a n a l o g y  w i t h  t h e  
m o l e c u l e  mean f r e e  p a t h  w i t h  r e s p e c t  t o  f i x e d  s p h e r e s  [8 ]  

4H 
% r. 

3 (1 -- n)  

Let us note that in (i) as in [5, 6] also, the replacement of the exponential integral func- 
tions by exponentials is used, as is often applied in the solution of radiation transfer 
problems [9] 

The radiation flux density J0 in (i) equals the sum of two components describing the 
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intrinsic thermal radiation of the outersurface and the radiation of the disperse surface 
reflected by it, respectively: 

io = ~oT~ + (I - -  %) i. (2)  

The flux density j contains radiation emanating from the volume of the disperse layer, the 
radiation J0 from the outer surface 2 reflected by the layer outer boundary, and the radia- 
tion J0 from the surface i transmitted through the layer as well as the intrinsic thermal 
radiation of this outer boundary 

]= +i~(~)exp{--2l(1--x)}d~+[(1--H)(1--8)+Hexp{--2l}]]o + (1--H)eT~(1). 

It follows from (2) and (3) 

1o = ~/[%T~ -+- (1 --%)(1 --  II) eT-2 (1) + 

where ~ = { 1 -- (I -- %) [(I -- fl) (I -- e) + II exp {--2l}1}-~. 

(3)  

] 1 -- ~o f'~) (~) exp{--2I(1--~)}d~ , (4) 
2 o 

We represent the temperature distribution in the layer that satisfies the symmetry 
condition in the form 

For appropriate values of the coefficients ~ and ~ such a dependence adequately approx- 
imates the real temperature profile with an abrupt drop in the temperature to the layer 
boundaries. Moreover, utilization of (5) and the mentioned replacement of the exponential 
integral functions by exponentials permits finding an approximate analytic solution of (i) 
by the method described in [5, 6]. 

Differentiating (i) twice with (5) taken into account and combining the result with 
(i), we obtain the differential equation 

whose solution has the form 

= al exp {2 ]/~-lx} + a2 exp {--2 VTlx}  + 

+ 8Flela(412--Pz)f ~z-4eIz ch {[3 (x - -  21 JJ + 4.l(1 + 2 1. (6) 

S u b s t i t u t i n g  (4 ) - (6 )  i n to  (1) and equa t ing  c o e f f i c i e n t s  of  exp{-2s and exp{2Zx}, we 
ob ta in  a system of  l i n e a r  a l g e b r a i c  equa t ions  to  determine the  c o e f f i c i e n t s  az and a 2 ( fo r  

~ i): 

+ 

1 
1 + ~ e -  [IIy (1 - -  %) (exp {2 V~- l} --  exp {--2/}) --  1] al + 

1 1 --  k%- [1Jr (1 --  %)(exp {--2 V~-l} - -  exp {--2/}) --  1] a2 = 

= 4HI {1 + 2~-- ? [II(1--eo) (1 + 2cz)(1- exp {--21}) + 

+ ( 1 - - e ~  1 + 2 ~ - 2 ~ c h  p-~-)2 +e~-~4]}_[_ 

81Ie/2~(4/2--~ 2) / e x p { ~ }  e x p { - - ~ }  + 

+ p~--~t 2 [ ~ + 2 t + p  

+ IIv(l -- ~0)[ 2l--l~ 2 

(7) 
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l+ r 

(7) 

The second equation of the system (7) is simplified with the first taken into account. 

Using the values of a I and a 2 found from (7), we determine the radiation flux densities 
J0 and j and the resultant radiation flux density 

�9 --4 
i r  = i - -  io = eo (I - -  T o ) ,  ( 8 )  

a c c o r d i n g  t o  ( 2 ) ,  (3 )  and ( 6 ) .  

For  ~ = 1 t h e  s k e l e t o n  a b s o r b s  a l l  t h e  r a d i a t i o n  i n c i d e n t  on i t  and ~ i s  d e t e r m i n e d  by 
the intrinsic thermal radiation of the sphere surfaces. It follows form (i) that in this 
case 

(x) = 4NlT r (x). (9 )  

The disperse layer can be characterized by the dimensionless density of the radiation 
flux j emanating from it which plays the part of a certain effective layer emissivity. How- 
ever, in the isothermal case (~ = 0) the effective emissivity can also be introduce by 
another manner. The results of computations using (3), (6)-(8) for ~ = 0 indicates that the 
resultant radiation flux density can be represented by analogy to the problem of two radiat- 
ing surfaces [i0] in the form 

1 (1 --T~ ), 
i r  = 1 1 (10) 

---+----i 
go gaff 

where eef f is the effective emissivity of the disperse layer determined by its porosity and 
the emissivity of the skeleton and independently of the external surface characteristics. 
This means that the disperse layer is equivalent in this case to a surface with emissivity 
Sef f. For e 0 = 1 (the outer surfaces are absolutely black) we have according to (i0) 

The system (7) is simplified for a thick layer (s >> i) when according to the second equa- 
tion 

a2 = a lexp {2 F~- l} .  (ii) 

Since in conformity with the above the ~eff is independent of e0, we set e 0 = i in the first 
equation in (7) for simplicity, which results in the isothermal case in the expression 

a2 = 4HI (V '7- - -  1)(1 -- Y~). (12)  

Substituting (ii) and (12) into (6), (3), (8) and (i0) we find that for s >> i 

�9 2ng7 
&eff = 8eff---- (I -- H) ~ -~ I q- ~ ( 13 ) 

! 

Let us not that for e ~ 1 eef f > e. 

The effective emissivity of a fluidized bed is computed in [2, ii] by using the method 
of stops (a set of elementary reflecting, transmitting, and emitting layers). The formula 

" sO, 4, 
gaff= (14) 

! 
is here proposed to estimate eef f in the range 0.4 < ~ < 0.95. 

The expression (14) does not contain the porosity H in contrast to (13). Comparison 
of the results of computing eef f by these formulas shows that for H = 0.8 the agreement is 
best: for e = 0.2 the difference is about 2% while it practically vanishes as e increases. 

! 
For other values of eef f the discrepancy between the quantities e computed by means of (13) 
and (14) will be the more substantial, the smaller the IN - 0.81 and the larger the H = 0.6, 
for instance, it is 15% for e = 0.2. 

For E = 1 in the isothermal case when according to (9), ~ = 4~s we obtain eef f = 1 - 
exp{-2s i.e., eel f = i, from (2), (3), (8) and (i0). 
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Fig. 2. Dependence of the effective emissivity of an iso' 
thermal disperse layer on its thickness for ~ = 0.9. 

Fig. 3. Dependence of the radiation flux density emanating 
from a nonisothermal disperse layer on the emissivity of 
the skeleton surface for ~ = 0.9. 

In the absence of outer surfaces (J0 = 0, which is equivalent to g0 = I, T0 = 0) the 
quantity eeff, according to (I0), determines the radiation flux density j emanating from a 
layer, i.e., in this case Eef f agrees with the effective quantity mentioned earlier. The 
dependences of eeff on the thickness of an isothermal disperse layer found from (7), (6), 
and (3) are represented in Fig. 2. It is seen from the figure that the greater the e, the 

! 

more rapidly (i.e., for smaller s is the asymptotic value eeff determined by (13) achieved. 
The nature of the dependence eeff(s here agrees with the dependence presented in [i0] for 
the effective emissivity of a cylindrical cavity on its relative depth. 

According to computations, in the presence of external surfaces for T 0 < 1 the values 
of j exceed the values of the flux density in the case of an individual laye[ eeff, where 
the smaller the e and the e 0, the greater the difference J-eeff for a fixed T o . As regards 
the density of the resultant flux Jr, then it diminishes in conformity with (I0). 

Let us, furthermore, examine a nonisothermal disperse layer whose temperature is de- 
scribed by the relationship (5). We assume that an abrupt temperature change occurs near 
the layer boundaries, i.e., ~ >> i. Then according to (5) 

~ ~ (I -- T~) exp {-- ~), (15) 

i.e., a << 1 (here Tw = 5(0) = T(1)). 

We obtain from (7) for ~ >> i, a << 1 

[ 2el~ (2/+ ~)]  exp { ~ } .  (16) 
a2 = 4 H l  (VT~ - -  1) 1 q- ~ 2  4el2) 

Taking account of (11) and (16) we wr i te  the expression for the r ad i a t i on  f lux dens i ty  
emanating from the layer  

�9 [ 4Hl ] [ ~ }  
]=Seff--~% 1--Hq- ( I + V - ~ ) ( ~ - 2 V e - / )  exp . (17) 

I t  follows from (17) tha t  the funct ion j can be both monotonic and with a maximum (see 
Fig. 3) for identical values of ~ for different ~ (i.e., different values of ~w)" The na- 
ture of the dependence j(e) is determined by the relative difference in the temperatures at 
the center and at the edges of the layer i - Tw: the passage to a non-monotonic function 
occurs as it increases. It is seen from Fig. 3 that the dependence of j on e in the noniso- 
thermal case is noticeably weaker than in the isothermal case when j + 1 as g + i. In con- 
trast to the isothermal case, there is here a value of e for which the equality j = e is 
satisfied, i.e., the disperse layer becomes equivalent to a continuous plane surface whose 
emissivity agrees with the emissivity of the skeleton surface. The kind of j(e) curves 
mentioned is explained by the fact that an increase in the degree of particle emissivity of 

1 2 7 0  
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Fig. 4. Dependence of the radiation 
flux density emanating from a noniso- 
thermal disperse layer in the presence 
of external surfaces on the emissivity 
of the skeleton surface for E = 0.9, 
T0 = Tw = 0.5. 

the disperse layer will result, on one hand, to growth of the particle radiation and, on the 
other, to diminution of the probability of emergence of photons from the layer that had 
originated at its cetral (hotter) part, and an increase in the role of the photons appear- 
ing near the boundaries where the temperature is lower. 

It follows from (15) and (17) that the steeper the temperature profile (i.e., the 
greater the S) for a fixed value of T w, the smaller the difference between the flux densi- 
ties emanating from the porous body in the isothermaland nonisothermal cases (the tempera- 
ture of the isothermal layer is here assumed equal to the temperature at z = z/2 in the non- 
isothermal layer). 

Results of computations obtained in the more general for_mula~ion, i.e., in the presence 
of external surfaces, are represented in Fig. 4 in the case T o = T w (the curves in Figs. 3 
and 4 correspond to ~ = 28, ~ = 50). It is seen from Fig. 4 that the curves j(s) are char- 
acterized by a maximum. As s + 1 the value of j tends to a quantity determined from (17), 
i.e., is independent of e 0. 

Therefore the approach proposed permits an analytic expression to be obtained for the 
radiation flux density emanating from a disperse layer in both the isothermal and noniso- 
thermal cases. The value of j depends on the geometric characteristics of the system 
(porosity, particle size, layer thickness), the temperature distribution in the layer and 
the emissivity of the external surfaces and particles simulating the disperse system. The 
necessity to introduce and compute the effective coefficient permitting the nonisothermy of 
the emitting layer to be taken into account [2] hence drops out. Let us note that the re- 
lationships obtained can be utilized in estimating both the emissivity of aerodisperse sys- 
tems and the radiation of porous layers in which there is a heat source (for example, the 
layer of a porous catalyst in which exothermal chemical reaction occurs). The dependences 
found afford the possibility, in principle, of estimating the parameters of the system un- 
der consideration according to the measured values of the radiation flux density emanating 
from the layer. 

NOTATION 

o, is the Stefan-Boltzmann constant, E, is the layer porosity, E and s 0 are the parti- 
cle and external surface emissivities, and T o is the outer surface temperature. 
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NONLINEAR MASS TRANSFER BETWEEN A GAS AND A 

FALLING LIQUID FILM. 

3. MULTICOMPONENT MASS TRANSPORT 

Khr. Boyadzhiev UDC 532.72:532.529 

A solution is obtained for the problem of multicomponent mass transfer between a 
gas and a falling liquid film. The case is considered in which the mass transfer 
of one of the components is limited by the nonlinear mass transport in the gas 
phase. The rates of multicomponent mass transport in the gas and liquid phases 
are determined. 

In the first and second parts of this work [i, 2] it was shown that nonlinear mass 
transfer (as a result of intensive mass transport in the gas phase) leads to significant 
changes in the velocity distributions in the liquid and gas. In the case of multicomponent 
mass transport this leads not only to changes in the rates of transport of the components 
with the large concentration gradients but also to changes in the rates of transport of the 
components for which the concentration gradients do not influence the hydrodynamics of the 
flow. 

The literature contains a number of experimental studies [3-5] in which it has been 
shown that as a result of simultaneous mass transfer in gas-liquid and liquid-liquid systems 
the transport of one component leads to changes in the rates of transport of the others. In 
these cases an increase in the rate of mass transfer is usually observed which is caused by 
the Marangoni effect, since this cannot be explained using the linear theory of mass trans- 
port [6]. 

In the present paper the effect will be considered for the case of multicomponent mass 
transport for the case in which the concentration gradient of one of the components in the 
gas phase influences the hydrodynamics of the flow. 

Mathematical Description. The theory of diffusion in multicomponent systems [7, 8] 
shows that the approximation of independent diffusion can be used not only in the case when 
the concentrations of the components are low, but also when the diffusion coefficients of 
the individual components are similar. This makes it possible to solve the problem of the 
kinetics of nonlinear mass transfer between a gas and a falling liquid film in multicompon- 
ent systems by solving the problem for the transport of any component to the approximation 
of the linear theory of mass transport, where the velocity distribution takes into account 
the effects of the nonlinear mass transport of one of the components. 

Let ~i and c I be the concentrations of any component in the gas and liquid, where mass 
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